

## Radical Dimerization of Glycosyl 2-Pyridylsulfones with Samarium (II) Iodide in the Presence of HMPA

## Gilles Doisneau and Jean-Marie Beau\*

Laboratoire de Synthèse de Biomolécules, associé au CNRS Institut de Chimie Moléculaire d'Orsay, Bâtiment 430, Université Paris-Sud, 91405 Orsay, France.

Fax: (33) 01 69 85 37 15; e-mail: jmbcau@icmo.u-psud.fr

Received 27 February 1998; accepted 11 March 1998

Abstract: Reduction of glycosyl 2-pyridylsulfones by samarium (II) iodide in the presence of HMPA leads to glycosyl dimers in up to 74% yield. This is rationalized by a free-radical mechanism.
© 1998 Published by Elsevier Science Ltd. All rights reserved.

Bimolecular radical reactions in the SmI<sub>2</sub>-mediated production of radicals are not favored because, in these reducing reaction conditions, any radical reaction must occur significantly faster than the reduction of the radical to the corresponding organosamarium<sup>1,2</sup>. This behavior explains the absence of dimerization in the reduction of primary alkyl iodides (or bromides) to the corresponding alcanes<sup>4,5</sup>. SmI<sub>2</sub>-promoted alkyl radical processes then mostly operate when an intramolecular trap of the radical is properly disposed as observed in cyclization reactions<sup>1d</sup>.

The chemistry generated at the anomeric center of carbohydrates follows these general trends. Electron transfer into appropriate anomeric substituents (halogens<sup>7</sup>, aryl sulfones<sup>7-10</sup>, phosphates<sup>11</sup>) leads to an anomeric radical **A** (Scheme) either trapped by a suitably located unsaturation (5-exo<sup>8</sup> or 9-endo<sup>7</sup> radical cyclizations) or further reduced to an anomeric samarium (III) species **B**. With an oxygen at position 2 as found

$$Sml_2$$

$$OP$$

$$Z = Br, SO_2Ar$$

$$P = radical trap$$

$$Radical cyclisation$$

$$P = SiR_3, Alkyl$$

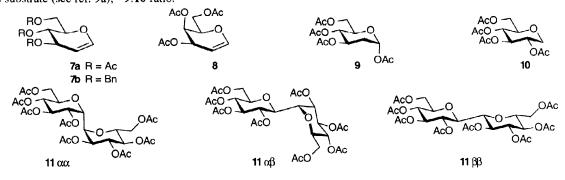
$$RCHO$$

$$Radical cyclisation$$

$$1,2-trans C-glycosides$$

## Scheme

in neutral hexoses, the anomeric organosamarium will either suffer monomolecular elimination (2-OAc<sup>7</sup>, 2-OCOR, -OCNR<sub>2</sub><sup>9c</sup>; glycal synthesis) or undergo C-C bond formation with carbonyl compounds<sup>7,9</sup> (2-O-alkyl


or silyl ether; *C*-glycoside synthesis) under Barbier procedures. Reduction of anomeric phenylsulfones by SmI<sub>2</sub> in THF necessitate the addition of HMPA to enhance the reducing power of SmI<sub>2</sub><sup>7</sup>. To facilitate radical cyclizations<sup>8</sup> as well as anionic Barbier procedures<sup>9</sup>, we introduced the 2-pyridylsulfonyl substituent which undergoes fast reduction by SmI<sub>2</sub> without HMPA. We now report that, in the absence of competing intramolecular reactions, SmI<sub>2</sub>-promoted reduction of anomeric 2-pyridylsulfones leads, via a radical process, to glycosyl dimers only in the presence of HMPA.

Fast addition of a THF solution of SmI<sub>2</sub> (0.1M, 2.4 equiv.) to a solution of  $\beta$ -D-glucopyranosyl-2-pyridylsulfone 1 in THF led, as expected, to the exclusive formation of glucal **7a** (Table, entry 1).

AcO AcO 
$$AcO R^1$$
 AcO  $AcO R^2$  AcO  $AcO R^$ 

| Entry | Substrates | Conditionsa |                  | Products |                     |                 |                        |                          |
|-------|------------|-------------|------------------|----------|---------------------|-----------------|------------------------|--------------------------|
|       |            |             | HMPA<br>(equiv.) | Glycal   |                     | Dimers          | 9                      | 10                       |
|       |            |             |                  | (% :     | yield) <sup>b</sup> | (% yield)b      | (% yield) <sup>b</sup> |                          |
| 1     | 1          | Aa          | 0                | 7a       | 92                  | _               | -                      | _                        |
| 2     | 1          | Α           | 8                | 7a       | 40                  | 52              | -                      | -                        |
| 3     | 1          | Α           | 16               | 7a       | 20                  | 74              | -                      | -                        |
| 4     | 1          | Α           | 32               | 7a       | 19                  | 73              | _                      | -                        |
| 5     | 2          | Α           | 0                | 7a       | c                   | -               | -                      | -                        |
| 6     | 2          | Α           | 8                | 7a       | 92                  | -               | -                      | -                        |
| 7     | 3          | Α           | 0                | 7a       | 90                  | -               | -                      | -                        |
| 8     | 3          | Α           | 8                | 7a       | 94                  | -               | -                      | =                        |
| 9     | 4          | Α           | 0                | 8        | 94                  | -               | -                      | -                        |
| 10    | 4          | Α           | 8                | 8        | 35                  | 50 <sup>d</sup> | -                      | -                        |
| 11    | 5          | Α           | 0                | 7b       | 24e                 | -               |                        | <b>6</b> 56 <sup>e</sup> |
| 12    | 5          | Α           | 8                | 7b       | 18e                 | 49d             |                        | 6 10 <sup>e</sup>        |
| 13    | 1          | Ba          | 0                | 7a       | 31                  | -               |                        | $34 (3.5)^{f}$           |
| 14    | 1          | В           | 8                | 7a       | 96                  | -               | -                      | -                        |
| 15    | 2          | B           | 0                | 7a       | 96                  | -               | -                      | -                        |
| 16    | 3          | В           | 0                | 7a       | 65                  | -               |                        | $27(0.6)^{f}$            |

<sup>&</sup>lt;sup>a</sup> To a solution of the substrate (1 mmol) in THF (40ml) with or without HMPA at room temperature was added a 0.1 M solution of SmI<sub>2</sub> (2.4 equiv.) in conditions A (dropwise addition in less than 10 s) or conditions B (seringe pump-driven addition in 2 h); b isolated yields by column chromatography; <sup>c</sup> no substancial reaction after 12 h at room temperature; <sup>d</sup> the isomeric composition of the dimeric mixture was not determined; <sup>e</sup> elimination and protonation of the anomeric organosamarium are known to compete for this substrate (see ref. 9a); <sup>f</sup> 9:10 ratio.



In the presence of an increasing amount of HMPA, the reaction products partition between glucal 7a and dimers  $11^{12}$  (Table, entries 2-4) with a maximum production of dimers 11 (74%, entry 3) in the presence of 16 equiv. of HMPA to SmI<sub>2</sub>. The three possible dimers  $11\alpha\alpha$ ,  $11\alpha\beta$  and  $11\beta\beta$  are formed in proportions (1.5:3.0:1.0, respectively)<sup>13</sup> independent of the quantity of HMPA. The galactosyl pyridylsulfone 4 or the mannosyl derivative 5 provided similarly about 50% isolated yields of dimers in the presence of 8 equiv. of HMPA to SmI<sub>2</sub> (Table, entries 9-12). The behavior of the anomeric pyridylsulfones is unique in that glucosyl phenylsulfone 2 or acetobromoglucose 3 led exclusively to elimination, under the same reaction conditions with or without HMPA<sup>14</sup> (Table, entries 5-8). HMPA only accelerates the rate of the elimination reaction.

Dimerization of glycosyl anomeric radicals were only observed under photolytic conditions, either from furanosyl<sup>15</sup> and pyranosyl<sup>16</sup> phenylsulfones (27% - 24% yield of dimers), or from glycosyl bromides and selenides<sup>17</sup> (irradiation in benzene in the presence of 1 equiv. of hexamethylditin, 32% yield of dimers). The efficiency of our dimerization results (74% of dimers) compares well with previous results and is, at first sight, surprising. HMPA, known to increase the reducing power of SmI2<sup>18</sup>, has been shown to enhance the rate of reduction of a primary alkyl radical to an organosamarium intermediate (second electron transfer)<sup>19</sup> up to 5-7 equiv. of HMPA to SmI2. If this were the case, pyridylsulfone 1 and 4 should only provide the glycal. We rationalize dimer formation by a radical mechanism and consider that "anionic" couplings (anomeric anionanomeric radical<sup>20</sup> or anomeric anion-anomeric pyridylsulfone<sup>1b</sup>) unreasonable because in both cases elimination of the anionic species to glycal should prevail. The dimer distribution ( $11\alpha\alpha$ ,  $11\alpha\beta$ ,  $11\beta\beta$  ratio of 1.5:3.0:1.0) obtained from pyridylsulfone 1 are very similar to that obtained by photolysis <sup>17a</sup> or electrolysis <sup>17b</sup> of bromides or selenides<sup>17</sup> (1:2:1) which can also be taken as a typical stereochemical signature of a radical mechanism. The inescapable explanation is, when the availability of SmI2 is not a limiting factor (fast addition mode), HMPA accelerates the first electron transfer more than the second one (formation of the anomeric organosamarium) so that the anomeric radical accumulates at a concentration high enough for dimerization to occur. This option is not available to phenylsulfone 2 and bromide 3 because, under the same conditions, the first electron transfer is still too slow.

This rationale was confirmed by a second series of experiments in which the SmI<sub>2</sub> solution was added slowly to the substrate (Table, entries 13-16). In the presence of 8 equiv. of HMPA to SmI<sub>2</sub>, pyridylsulfone 1 furnished only glucal 7a (Table, entry 14). Under these conditions, the anomeric radical is produced at a concentration too low for dimerization. Without HMPA, sulfone 1 and bromide 3 provided the same products 7a, 9 and 10 in different ratios [7a:9+10 ratio of ~1:1 (from 1) or ~2:1 (from 3)] whereas phenylsulfone 2 led only to elimination (Table, entries 13, 15 and 16). Glycal 7a originates from the organosamarium whereas deoxy compounds 9 and 10 originate from the radical by either hydrogen transfer ( $\rightarrow$ 10) or 1,2-rearrangement and hydrogen transfer<sup>21</sup> ( $\rightarrow$ 9). We notice again different behavior of the three substrates which can provide a qualitative estimation of the relative rate for the first electron transfer onto anomeric substituents of 2,3,4,6-tetra-O-acetyl-D-glucopyranose which is in the k(SO<sub>2</sub>Pyr) > k(Br) > k(SO<sub>2</sub>Ph) order.

In summary, the results described in this paper showed that (i) useful yields of glycosyl dimers can be obtained by reduction of glycosyl pyridylsulfones by the SmI<sub>2</sub>/HMPA system under appropriate conditions, and (ii) proper experimental conditions should be chosen to perform glycal or *C*-glycoside synthesis (Barbier procedure) by reductive samariation of adapted anomeric substituents.

## References and notes

- Reviews: (a) Kagan H. B. New. J. Chem. 1990, 14, 453-460; (b) Curran D. P.; Ferig T. L.; Jaspersen C. P.; Tobleden M. L. Synlett 1992, 943-961; (c) Molander G. A. in Organic Reactions; Paquette L. A., Ed., John Wiley: New York, 1994, Vol.46, 211-367; (d) Molander G. A.; Harris C. R. Chem. Rev. 1996, 96, 307-338.
- 2. A notable exception is the intermolecular samarium diiodide pinacol coupling reaction, however a detailled mechanistic picture is not yet available 2c, 3.
- 3. Review: Robertson G. M. in *Comprehensive Organic Synthesis*, Vol.3, Trost B. M.; Fleming I.; Pattenden G. Ed., Pergamon, Oxford, 1991, 563-611.
- 4. Girard P.; Namy J.-L.; Kagan H. B. J. Am. Chem. Soc., 1980, 102, 2693-2698.
- 5. Dimers are formed by an ionic mechanism<sup>1b</sup> when the first electron transfer is faster as with allylic or benzylic halides<sup>4</sup> or when a significant increase in the rate of reduction is obtained by adding catalytic amounts (1%) of NiI<sub>2</sub> as seen in the reduction of  $nC_{12}H_{25}I$  (RH: R-R ratio of 3.3)<sup>6</sup>.
- 6. Machrouki F.; Hamann B.; Namy J.-L.; Kagan H. B. Synlett 1996, 633-634.
- 7. (a) De Pouilly P.; Chénedé A.; Mallet J.-M.; Sinaÿ P. *Tetrahedron Lett.* **1992**, *33*, 8065-8068; (b) De Pouilly P.; Chénedé A.; Mallet J.-M.; Sinaÿ P. *Bull. Soc. Chim. Fr.* **1993**, *102*, 256-265; Chénedé A.; Perrin E.; Rekaï E. D.; Sinaÿ P. *Synlett* **1994**, 420-422.
- 8. (a) Mazéas D.; Skrydstrup T.; Doumeix O.; Beau J.-M. Angew. Chem. Int. Ed. Engl. 1994, 33, 1383-1386; (b) Skrydstrup T.; Mazéas D.; Elmouchir M.; Doisneau G.; Beau J.-M. Chem. Eur. J. 1997, 8, 1342-1355.
- (a) Mazéas D.; Skrydstrup T.; Beau J.-M. Angew. Chem. Int. Ed. Engl. 1995, 34, 909-912; (b) Jarreton O.; Skrydstrup T.; Beau J.-M. J. Chem. Soc, Chem Commun. 1996, 1661-1662; (c) Jarreton O.; Skrydstrup T.; Beau J.-M. J. Chem. Soc, Chem Commun. Lett. 1997, 36, 1767-1770; Urban D.; Skrydstrup T.; Riche C.; Chiaroni A.; Beau J.-M. J. Chem. Soc, Chem Commun. 1996, 1883-1884.
- 10. Vlahov I.R.; Vlahova P.I.; Linhardt R. J. J. Am. Chem. Soc. 1997, 119, 1480-1481.
- 11. Hung S.-C.; Wong C.-H. Angew. Chem. Int. Ed. Engl. 1996, 35, 2671-2674.
- 12. All compounds gave satisfactory analytical and NMR data.
- 13. The quantitative analysis of the dimer mixture was done by  ${}^{1}$ H-NMR analysis. The major  $11\alpha\beta$  isomer readily crystallized from an Et<sub>2</sub>O solution (30% isolated yield).
- 14. The reductive samariation of anomeric phenylsulfones requires the presence of HMPA: see ref.7 and also Künzer H.; Stahnke M.; Sauer G.; Wiechert R. *Tetrahedron Lett.* **1991**, *32*, 1949-1952.
- 15. Collins P.M.; Whitton B. R. Carbohydr. Res. 1974, 36, 293-301.
- 16. Collins P.M.; Whitton B. R. J. Chem. Soc. Perkin I, 1974, 1069-1075.
- 17. (a) Giese B.; Rückert B.; Gröninger K. F.; Muhn R.; Lindner H.J.; Liebigs Ann. Chem. 1988, 997-1000; (b) Alberti A.; Della Bona M. A.; Macciantelli D.; Pelizzoni F.; Sello G.; Torri G.; Vismara E. Tetrahedron 1996, 52, 10241-10248.
- 18. Introduction of the THF-HMPA system: Inanaga J.; Ishikawa M.; Yamaguchi M.; Chem. Lett. 1987, 1485-1486.
- 19. Hasegawa E.; Curran D.P. Tetrahedron Lett. 1993, 34, 1717-1720.
- 20. Kornblum N. Angew. Chem. Int. Ed. Engl. 1975, 14, 734-735.
- 21. Gicse B.; Gröninger K.S.; Witzel T.; Korth H.G.; Sustmann R. Angew. Chem. Int. Ed. Engl. 1987, 26, 233-234; Quiclet -Sire B.; Zard S. Z. J. Am. Chem. Soc., 1996, 118, 9190-9191 and references cited.